Insect solutions to olfaction and visual navigation

BRANDY School Val di Sole

Olfaction

"Odors" are typically complex mixtures of chemicals, e.g., the smell of coffee contains dozens of components above detection threshold:

Chemical components in Coffee Aroma

Odor component	μg/l*	Odor component	$\mu g/l^*$
Acetaldehyde	4700	3-Hydroxy-4,5-dimethyl-2(5H)-furanone	80
Methylpropanal	760	(E)-P-Damascenone	1.6
2-Methylbutanal	870	Guaiacol	120
3-Methylbutanal	570	4-Ethylguaiacol	48
2,3-Butanedione	2100	4-Vinylguaiacol	740
2,3-Pentanedione	1600	Vanillin	210
2-Ethyl-3,5-dimethylpyrazine	17	2-Furfurylthiol	17
2-Ethenyl-3,5-dimethylpyrazine	1.0	Methional	10
2,3-Diethyl-5-methylpyrazine	3.6	3-Mercapto-3-methylbutyl formate	5.7
2-Ethenyl-3-ethyl-5-methylpyryzine	0.2	2-Methyl-3-furanthiol	1.1
3-Isobutyl-2-methoxypyrazine	1.5	3-Methyl-2-buten-1-thiol	0.6
4-Hydroxy-2,5-dimethyl-3(2H)-furanone	7200	Methanethiol	170
2(5)-Ethyl-4-hydroxy-5(2)-methyl-3(2H)-furanone	800		

^{*}in coffee brew

Mayer et al. Eur Food Res Technol (2000)

Prof. Thomas Nowotny (@drtnowotny)

Olfaction

- "Odors" are typically complex mixtures of chemicals, e.g., the smell of coffee contains dozens of components above detection threshold:
- Animals (and humans) can, however, also recognize the components in a mixture (to some extent)

Odours mix in complex plumes

Marc Weissburg et al. J Exp Biol 2012;215:4175-4182 ©2012 by The Company of Biologists Ltd

- Odours travel
 from their source
 to your nose in
 complex plumes
- Odour molecules from different sources mingle with each other – but don't fully mix

Olfactory system - humans

Prof. Thomas Nowotny (@drtnowotny)

Olfactory transduction pathway (mammal)

Stages

- Mucus, odor binding proteins
- Olfactory receptor neurons
- Mitral cells/ granule cells in the olfactory bulb
- Piriform cortex

"electrical" chemica

Prof. Thomas Nowotny (@drtnowotny)

UNIVERSITY OF SUSSEX

Olfactory system – insects

Heisenberg, Nat Rev Neurosci 4 266 (2003)

Principles of olfactory systems

- Large number of olfactory receptor types
- Each olfactory receptor neuron (ORN) expresses one specific type
- All ORNs of the same type converge onto the same glomerulus
- Olfactory receptors typically have a broad response profile
- Individual odorants activate more than one receptor type

Olfactory responses are encoded in overlapping pattern of glomerular activity patterns

Odour Object recognition

- Odours are complex mixtures of (often numerous) chemical substances
- Animals encounter these complex odours in a mixture from different sources in the environment.
- How can they make sense of this complex "odour scene"?

Related problem in the auditory system: Cocktail party problem

→ Concurrent sound segregation

Demo

Did you smell the difference?

Prof. Thomas Nowotny (@drtnowotny)

OI

UNIVERSITY OF SUSSEX

Conditioned Proboscis Extension Response (PER)

Concurrent odor segregation?

Szyszka, Stierle, Biergans, Galizia (2012) **The Speed of Smell: Odor-Object Segregation within Milliseconds**. *PLoS ONE*, 7(4)

Bees use onset asynchrony

A= nonanol or hexanol B= hexanol or nonanol

Szyszka, Stierle, Biergans, Galizia (2012) The Speed of Smell: Odor-Object Segregation within Milliseconds. *PLoS ONE*, 7(4)

Circuit (hypothesis driven)

unmodeled glomeruli Antennal Lobe modeled glomeruli PN LN olfactory nerve Antenna ORN

Model "anatomy" (data driven)

Hypothesis driven part

Hypothesis: Inhibitory winner-take-all circuit breaks the symmetry so that A.B and B.A can be distinguished from AB and each other.

Odour A: LN_{max}(A)

Odour B: $LN_{max}(B)$

Odours A+B: $LN_{max}(AB)$

Glomerulus B

The inhibitory circuit: Winner-take-all

Prof. Thomas Nowotny (@drtnowotny)

PN activity patterns

50 Hz

Template-correlation functions

Prof. Thomas Nowotny (@drtnowotny)

CCNR and Sussex Neuroscience, School of Engineering and Informatics

UNIVERSITY OF SUSSEX

"Odor Objects" project

Prof. Thomas Nowotny (@drtnowotny)

Navigation in Ants and Bees

- Bees can memorize routes over long distances (km)
- Bees and ants can do path integration
- Bees can communicate food locations (waggle dance)

What if we could design an autonomous flying robot with the navigational and learning abilities of a honeybee?

CCNR and Sussex Neuroscience, School of Engineering and Informatics

UNIVERSITY OF SUSSEX

Visual navigation

Procedural What do I do?

Low-res No object recognition

Have I seen this before? Not where am I?

Perfect memory model

- Apply the view matching algorithm directly:
 - Store views regularly along a route
 - When repeating the route, calculate pixel distance with every view in every direction
 - Move in the direction of the globally best match

Infomax familiarity network model

- Train a single layer ANN to predict view familiarity
- Test current view in all directions
- Move in direction of highest familiarity

Baddeley B, Graham P, Husbands P, Philippides A (2012) A Model of Ant Route Navigation Driven by Scene Familiarity. PLOS Computational Biology 8(1): e1002336. https://doi.org/10.1371/journal.pcbi.1002336 https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002336

Navigation performance in sparse environment

UNIVERSITY

OF SUSSEX

Baddeley B, Graham P, Husbands P, Philippides A (2012) A Model of Ant Route Navigation Driven by Scene Familiarity. PLOS Computational Biology 8(1): e1002336. https://doi.org/10.1371/journal.pcbi.1002336

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002336

Prof. Thomas Nowotny (@drtnowotny)

Navigation performance in cluttered environment

Baddeley B, Graham P, Husbands P, Philippides A (2012) A Model of Ant Route Navigation Driven by Scene Familiarity. PLOS Computational Biology 8(1): e1002336. https://doi.org/10.1371/journal.pcbi.1002336

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002336

Prof. Thomas Nowotny (@drtnowotny)

(2016-2021)

Acknowledgments

Thank you!

